
Prolog lecture 2

Go to:

http://etc.ch/xVkG

Or scan the
barcode

http://etc.ch/xVkG

Today's discussion
Videos:

Solving a logic puzzle

Prolog rules

Lists

Agenda
1) Voting/quiz questions from the videos
2) Answer the questions you asked on sli.do
3) Programming challenge

Which of these are true statements
● _ unifies with anything
● 1+1 unifies with 2
● prolog unifies with prolog
● prolog unifies with java

http://etc.ch/xVkG

What's the result of unifying cons(1,cons(X)) with
cons(1,cons(2,cons(3)))

● False: they don't unify
● True: they unify
● True: X is now cons(2,cons(3))
● True: X is now cons(1,cons(2,cons(3)))

http://etc.ch/xVkG

Which of these is a list containing the numbers 1,2,3

● [1 , 2 , 3]
● [1 | [2 , 3]]
● [1 | 2 , 3]
● [1 , 2 | 3]
● [1 , 2 | [3]]
● [1 , 2 , 3 | []]

http://etc.ch/xVkG

Q: In the Zebra puzzle, why isn't the `rightOf` fact
used help define the `nextTo` fact (e.g. `nextTo(A, B,
rightOf(A, B)). nextTo(A, B, rightOf(B, A)).`)

Q: In the Zebra puzzle, why isn't the `rightOf` fact
used help define the `nextTo` fact (e.g. `nextTo(A, B,
rightOf(A, B)). nextTo(A, B, rightOf(B, A)).`)

A: You could easily define nextTo in terms of rightOf
etc. (there's a supervision question on it). It's done
without rules in the video because we've not covered
rules at that point.

Q: Why is the last lecture still using the "bounds"
library? Comment on its website: deprecated - No
longer maintained. Please use clpfd.pl

Q: Why is the last lecture still using the "bounds"
library? Comment on its website: deprecated - No
longer maintained. Please use clpfd.pl

A: The bounds library still works so I have not
changed it: this leaves me time for 'other things'...

(Please keep your questions to the videos for the
current session.)

Q: I often write logically-correct code which doesn't
terminate. What heuristics can I apply to see if this
will happen without running the code?

Q: I often write logically-correct code which doesn't
terminate. What heuristics can I apply to see if this
will happen without running the code?

A: Its quite hard to do this without using things like
arithmetic (Thursday) but let's look at some
examples now and then some more next time.

Does this program terminate?

a(X) :- a(X).

Does this program terminate?

a(X) :- a(X).

Yes! Trick question. This program doesn't
have any queries in it...

Does this program terminate?

a(X) :- a(X).

:- a(1).

Does this program terminate?

a([]).

a([_|T]) :- a(T).

:- X = <any_finite_list>, a(X).

Does this program terminate?

a([],R) :- a(R,[]).

a([H|T],R) :- a(T,[H|R]).

:- X = <any_finite_list>, a(X,[]).

What does this print?

a([],R) :- print(R), a(R,[]).

a([H|T],R) :- a(T,[H|R]).

:- a([1,2,3],[]).

Does this terminate?

a([]) :- a([1|X]).

:- a([]).

Write a program which runs out of stack as quickly
as possible

Today's programming challenge - Map colouring
Colour the regions shown below using four different colours so that no
touching regions have the same colour.

 +----+--------+-------+
 | | C2 | C3 |
 | +----+---+--+----+
 | C1 | C4 | C7 | |
 | +----+------+ |
 | | | C8 |
 +----+ C6 | |
 | C5 | | |
 +----+-----------+----+

Useful trick: testing your code

last([X],X).

last([_|T],R) :- last(T,R).

:- last([1,2,3],X), X=3.

This is better than
:- last([1,2,3],3).

